ERRATA

Volume 9, Number 1, pp. 1-7, Dihydrocortisol: A Potential Mineralocorticoid, DIANA MARVER and ISIDORE S. EDELMAN.

The author regrets that, while the actual K_D values shown in Table 2 are correct, three of the numbers appearing as ratios of these K_D values in Table 1 are not. A corrected version of Table 1 appears below.

Table 1. Relative affinities of various steroids for human CBG and rat renal mineralocorticoid (Type I) and glucocorticoid (Type II) receptors (25°C)

Steroid	CBG	Type I	Type II
Aldosterone	2	100	(20)
Dexamethasone	(1)	(2)	Ì00
Cortisol	100	5	10
5 _a -DHF	8	2	0.5
5_{β} -DHF	8	1	0.1
allo THF		inactive	inactive

Numbers in parentheses were taken from the literature [10, 20, 33].

In reference to this table (p. 1, Summary and p. 2, Results), the relative affinities for Type I mineralocorticoid receptors should read: aldosterone (1.00) > cortisol (0.05) > 5α DHF (0.02) > 5β DHF (0.01).

Volume 8, Number 11, pp. 1205-1206, Androgen Receptors in the Rat Epididymis do not Disappear after Castration, R. S. CALANDRA, K. PURVIS, A. ATTRAMADAL and V. HANSSON.

The publisher regrets that, due to a typographic error, part of the first sentence at the top of the second paragraph on p. 206 was misplaced. The complete sentence should read:

After castration, there is an atrophy and metaplasia of the epithelial cells (containing androgen receptors) and a relative increase in fibromuscular stroma (without receptor) [11].